在日常的學習、工作、生活中,肯定對各類范文都很熟悉吧。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優質范文,僅供參考,大家一起來看看吧。
小升初數學知識點篇一
一 概念
(一)整數
1 .整數的意義
自然數和0都是整數。
2 .自然數
我們在數物體的時候,用來表示物體個數的1,2,3叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3.計數單位 :一(個)、十、百、千、萬、十萬、百萬、千萬、億都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4. 數位
計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
5.數的整除
整數a除以整數b(b 0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,的約數是10。
一個數的倍數的個數是無限的',其中最小的倍數是它本身。3的倍數有:3、6、9、12其中最小的倍數是3 ,沒有的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特征可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=35,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中的一個,叫做這幾個數的公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那么較小數就是這兩個數的公約數。
如果兩個數是互質數,它們的公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18
3的倍數有3、6、9、12、15、18 其中6、12、18是2、3的公倍數,6是它們的最小公倍數。
如果較大數是較小數的倍數,那么較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那么這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
小升初數學知識點篇二算術
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 o除以任何不是o的數都得o。 簡便乘法:被乘數、乘數末尾有o的乘法,可以先把o前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、有余數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
方程式:含有未知數的等式叫方程式。
一元一次方程式:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
代數: 代數就是用字母代替數。
代數式:用字母表示的式子叫做代數式。如:3x =ab+c
分數
分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數。這兩個數互為倒數。1的倒數是1,0沒有倒數。
分數除以整數(0除外),等于分數乘以這個整數的倒數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等于乘這個數的倒數。
真分數:分子比分母小的分數叫做真分數。
假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和 - 另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米。
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克=1公斤= 1市斤
體積和表面積
三角形的面積=底×高÷2。 公式 s= a×h÷2
正方形的面積=邊長×邊長 公式 s= a2
長方形的面積=長×寬 公式 s= a×b
平行四邊形的面積=底×高 公式 s= a×h
梯形的面積=(上底+下底)×高÷2 公式 s=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:s=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: s=6a2
長方體的體積=長×寬×高 公式:v = abh
長方體(或正方體)的體積=底面積×高 公式:v = abh
正方體的體積=棱長×棱長×棱長 公式:v = a3
圓的周長=直徑×π 公式:l=πd=2πr
圓的面積=半徑×半徑×π 公式:s=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:s=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。 公式:s=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:v=sh
圓錐的體積=1/3底面×積高。公式:v=1/3sh
小升初數學知識點篇三
一.整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數“1”平均分成10份、100份、1000份……這樣的一份或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:
小數 有限小數
無限循環小數
無限小數
無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
二.數的整除
1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有余數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有的倍數。
一個數約數的個數是有限的.,最小的約數是1,的約數是它本身。
4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有“4、6、8、9、10、12、14、15、16、18
6.能被2整除的數的特征:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特征:個位上是0或者5的數,都能被5整除。